Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370696

RESUMEN

Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on sarbecovirus response breadths elicited by mosaic-8b, admix-8b (8 homotypics), and homotypic SARS-CoV-2, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies derived from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced with mosaic-8b boosting, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.

2.
Microb Biotechnol ; 15(7): 2126-2139, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35312165

RESUMEN

The methylotrophic yeast Pichia pastoris is commonly used for the production of recombinant proteins at scale. The identification of an optimally overexpressing strain following transformation can be time and reagent consuming. Fluorescent reporters like GFP have been used to assist identification of superior producers, but their relatively big size, maturation requirements and narrow temperature range restrict their applications. Here, we introduce the use of iLOV, a flavin-based fluorescent protein, as a fluorescent marker to identify P. pastoris high-yielding strains easily and rapidly. The use of this fluorescent protein as a fusion partner is exemplified by the production of the antimicrobial peptide NI01, a difficult target to overexpress in its native form. iLOV fluorescence correlated well with protein expression level and copy number of the chromosomally integrated gene. An easy and simple medium-throughput plate-based screen directly following transformation is demonstrated for low complexity screening, while a high-throughput method using fluorescence-activated cell sorting (FACS) allowed for comprehensive library screening. Both codon optimization of the iLOV_NI01 fusion cassettes and different integration strategies into the P. pastoris genome were tested to produce and isolate a high-yielding strain. Checking the genetic stability, process reproducibility and following the purification of the active native peptide are eased by visualization of and efficient cleavage from the iLOV reporter. We show that this system can be used for expression and screening of several different antimicrobial peptides recombinantly produced in P. pastoris.


Asunto(s)
Péptidos Antimicrobianos , Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Saccharomycetales
3.
PLoS One ; 14(1): e0210121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30615645

RESUMEN

CRISPR-Cas systems have become widely used across all fields of biology as a genome engineering tool. With its recent demonstration in the Gram positive industrial workhorse Bacillus subtilis, this tool has become an attractive option for rapid, markerless strain engineering of industrial production hosts. Previously described strategies for CRISPR-Cas9 genome editing in B. subtilis have involved chromosomal integrations of Cas9 and single guide RNA expression cassettes, or construction of large plasmids for simultaneous transformation of both single guide RNA and donor DNA. Here we use a flexible, co-transformation approach where the single guide RNA is inserted in a plasmid for Cas9 co-expression, and the donor DNA is supplied as a linear PCR product observing an editing efficiency of 76%. This allowed multiple, rapid rounds of in situ editing of the subtilisin E gene to incorporate a salt bridge triad present in the Bacillus clausii thermotolerant homolog, M-protease. A novel subtilisin E variant was obtained with increased thermotolerance and activity.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Proteínas de Transporte de Membrana/genética , Subtilisinas/genética , Ingeniería Genética , Microbiología Industrial/métodos , Plásmidos , Transformación Bacteriana/genética
4.
Microbiology (Reading) ; 164(3): 287-298, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29458683

RESUMEN

Bio-production of fuels and chemicals from lignocellulosic C5 sugars usually requires the use of the pentose phosphate pathway (PPP) to produce pyruvate. Unfortunately, the oxidation of pyruvate to acetyl-coenzyme A results in the loss of 33 % of the carbon as CO2, to the detriment of sustainability and process economics. To improve atom efficiency, we engineered Escherichia coli to utilize d-xylose constitutively using the Weimberg pathway, to allow direct production of 2-oxoglutarate without CO2 loss. After confirming enzyme expression in vitro, the pathway expression was optimized in vivo using a combinatorial approach, by screening a range of constitutive promoters whilst systematically varying the gene order. A PPP-deficient (ΔxylAB), 2-oxoglutarate auxotroph (Δicd) was used as the host strain, so that growth on d-xylose depended on the expression of the Weimberg pathway, and variants expressing Caulobacter crescentus xylXAB could be selected on minimal agar plates. The strains were isolated and high-throughput measurement of the growth rates on d-xylose was used to identify the fastest growing variant. This strain contained the pL promoter, with C. crescentus xylA at the first position in the synthetic operon, and grew at 42 % of the rate on d-xylose compared to wild-type E. coli using the PPP. Remarkably, the biomass yield was improved by 53.5 % compared with the wild-type upon restoration of icd activity. Therefore, the strain grows efficiently and constitutively on d-xylose, and offers great potential for use as a new host strain to engineer carbon-efficient production of fuels and chemicals via the Weimberg pathway.


Asunto(s)
Escherichia coli/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas , Xilosa/metabolismo , Biomasa , Metabolismo de los Hidratos de Carbono , Caulobacter crescentus/enzimología , Caulobacter crescentus/genética , Conservación de los Recursos Naturales , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Xilosa/genética
5.
Microbiology (Reading) ; 164(2): 133-141, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29231156

RESUMEN

Citramalic acid is a central intermediate in a combined biocatalytic and chemocatalytic route to produce bio-based methylmethacrylate, the monomer used to manufacture Perspex and other high performance materials. We developed an engineered E. coli strain and a fed-batch bioprocess to produce citramalate at concentrations in excess of 80 g l-1 in only 65 h. This exceptional efficiency was achieved by designing the production strain and the fermentation system to operate synergistically. Thus, a single gene encoding a mesophilic variant of citramalate synthase from Methanococcus jannaschii, CimA3.7, was expressed in E. coli to convert acetyl-CoA and pyruvate to citramalate, and the ldhA and pflB genes were deleted. By using a bioprocess with a continuous, growth-limiting feed of glucose, these simple interventions diverted substrate flux directly from central metabolism towards formation of citramalate, without problematic accumulation of acetate. Furthermore, the nutritional requirements of the production strain could be satisfied through the use of a mineral salts medium supplemented only with glucose (172 g l-1 in total) and 1.4 g l-1 yeast extract. Using this system, citramalate accumulated to 82±1.5 g l-1, with a productivity of 1.85 g l-1 h-1 and a conversion efficiency of 0.48 gcitramalate g-1glucose. The new bioprocess forms a practical first step for integrated bio- and chemocatalytic production of methylmethacrylate.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Malatos/metabolismo , Ingeniería Metabólica , Acetilcoenzima A/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Técnicas de Cultivo Celular por Lotes , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentación , Genes Bacterianos/genética , Methanocaldococcus/enzimología , Methanocaldococcus/genética , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Sci Rep ; 3: 1099, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23346356

RESUMEN

We present an approach for genome-wide association analysis with improved power on the Wellcome Trust data consisting of seven common phenotypes and shared controls. We achieved improved power by expanding the control set to include other disease cohorts, multiple races, and closely related individuals. Within this setting, we conducted exhaustive univariate and epistatic interaction association analyses. Use of the expanded control set identified more known associations with Crohn's disease and potential new biology, including several plausible epistatic interactions in several diseases. Our work suggests that carefully combining data from large repositories could reveal many new biological insights through increased power. As a community resource, all results have been made available through an interactive web server.


Asunto(s)
Epistasis Genética/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Enfermedad de Crohn/genética , Interpretación Estadística de Datos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Fenotipo
7.
J Am Chem Soc ; 134(47): 19310-3, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23130969

RESUMEN

Using directed evolution, a variant N-acetyl amino acid racemase (NAAAR G291D/F323Y) has been developed with up to 6-fold higher activity than the wild-type on a range of N-acetylated amino acids. The variant has been coupled with an enantiospecific acylase to give a preparative scale dynamic kinetic resolution which allows 98% conversion of N-acetyl-DL-allylglycine into D-allylglycine in 18 h at high substrate concentrations (50 g L(-1)). This is the first example of NAAAR operating under conditions which would allow it to be successfully used on an industrial scale for the production of enantiomerically pure α-amino acids. X-ray crystal analysis of the improved NAAAR variant allowed a comparison with the wild-type enzyme. We postulate that a network of novel interactions that result from the introduction of the two side chains is the source of improved catalytic performance.


Asunto(s)
Amidohidrolasas/metabolismo , Aminoácidos/biosíntesis , Racemasas y Epimerasas/metabolismo , Amidohidrolasas/química , Aminoácidos/química , Modelos Moleculares , Estructura Molecular , Racemasas y Epimerasas/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...